小說博覽 > 科幻小說 > 神探貝斯特

正文 253 物理學之熱學 中 文 / 月之輪迴

    五、熱力學

    熱力學主要是從能量轉化的觀點來研究物質的熱性質,它揭示了能量從一種形式轉換為另一種形式時遵從的宏觀規律。熱力學是總結物質的宏觀現象而得到的熱學理論,不涉及物質的微觀結構和微觀粒子的相互作用。因此它是一種唯象的宏觀理論,具有高度的可靠性和普遍性。

    熱力學三定律是熱力學的基本理論。熱力學第一定律反映了能量守恆和轉換時應該遵從的關係,它引進了系統的態函數——內能。熱力學第一定律也可以表述為:第一類永動機是不可能造成的。

    熱學中一個重要的基本現象是趨向平衡態,這是一個不可逆過程。例如使溫度不同的兩個物體接觸,最後到達平衡態,兩物體便有相同的溫度。但其逆過程,即具有相同溫度的兩個物體,不會自行回到溫度不同的狀態。

    這說明,不可逆過程的初態和終態間,存在著某種物理性質上的差異,終態比初態具有某種優勢。1854年克勞修斯引進一個函數來描述這兩個狀態的差別,1865年他給此函數定名為熵。

    1850年,克勞修斯在總結了這類現象後指出:不可能把熱從低溫物體傳到高溫物體而不引起其他變化,這就是熱力學第二定律的克氏表述。幾乎同時,開爾以不同的方式表述了熱力學第二定律的內容。

    用熵的概念來表述熱力學第二定律就是:在封閉系統中,熱現象宏觀過程總是向著熵增加的方向進行,當熵到達最大值時,系統到達平衡態。第二定律的數學表述是對過程方向性的簡明表述。

    1912年能斯脫提出一個關於低溫現象的定律:用任何方法都不能使系統到達絕對零度。此定律稱為熱力學第三定律。

    熱力學的這些基本定律是以大量實驗事實為根據建立起來的,在此基礎上,又引進了三個基本狀態函數:溫度、內能、熵。共同構成了一個完整的熱力學理論體系。此後,為了在各種不同條件下討論系統狀態的熱力學特性,又引進了一些輔助的狀態函數。如焓、亥姆霍茲函數(自由能)、吉布斯函數等。這會帶來運算上的方便,並增加對熱力學狀態某些特性的瞭解。

    從熱力學的基本定律出發。應用這些狀態函數,利用數學推演得到系統平衡態各種特性的相互聯繫,是熱力學方法的基本內容。

    熱力學理論是普遍性的理論,對一切物質都適用,這是它的優點,但它不能對某種特殊物質的具體性質作出推論。例如討論理想氣體時,需要給出理想氣體的狀態方程;討論電磁物質時,需要補充電磁物質的極化強度和場強的關係等。這樣才能從熱力學的一般關係中。得出某種特定物質的具體知識。平衡態熱力學的理論已很完善,並有廣泛的應用。但在自然界中,處於非平衡態的熱力學系統(物理的、化學的、生物的)和不可逆的熱力學過程是大量存在的。因此,這方面的研究工作十分重要,並已取得一些重要的進展。

    目前,研究非平衡態熱力學的一種理論是在一定條件下,把非平衡態看成是數目眾多的局域平衡態的組合,借助原有的平衡態的概念描述非平衡態的熱力學系統。並且根據「流」和「力」的函數關係,將非平衡態熱力學劃分為近平衡區(線性區)和遠離平衡區(非線性區)熱力學。這種理論稱為廣義熱力學,另一種研究非平衡態熱力學的理論是理性熱力學。它是以熱力學第二定律為前提。從一些公理出發,在連續媒質力學中加進熱力學概念而建立起來的理論。它對某些具體問題加以論證,在特殊的彈性物質的應用中取得了一定成果。

    非平衡態熱力學領域提供了對不可逆過程宏觀描述的一般綱要。對非平衡態熱力學或者說對不可逆過程熱力學的研究。涉及廣泛存在於自然界中的重要現象,是正在探討的一個領域。如平衡態的熱力學和統計力學的關係一樣,從微觀運動的角度研究非平衡態現象的理論是非平衡態統計力學。

    第二定律

    熱力學第二定律主要內容?1.熱傳導的方向性

    熱傳導的過程是有方向性的,這個過程可以向一個方向自發地進行,但是向相反的方向卻不能自發地進行.

    2.第二類永動機

    只有單一的熱源,它從這個單一熱源吸收的熱量,可以全部用來做功,而不引起其他變化.人們把這種想像中的熱機稱為第二類永動機.第二類永動機不可能製成,表示機械能和內能的轉化過程具有方向性.

    3.熱力學第二定律

    熱力學第二定律有多種表述。下面給出常見的兩種.

    一種表述是:不可能使熱量由低溫物體傳遞到高溫物體,而不引起其他變化.這是按照熱傳導的方向性來表述的.

    另一種表述是:不可能從單一熱源吸收熱量並把它全部用來做功。而不引起其他變化.這是按照機械能與內能轉化過程的方向性來表述的,它也可以表述為:第二類永動機是不可能製成的.

    4.能量耗散

    能量耗散是從能量轉化的角度反映出自然界中的宏觀過程具有的方向性.

    研究對像

    自然界物質運動形式具有多樣性,除了存在如汽車、火車的運行。車床飛輪的飛轉,天體運動等一類現象之外,還有物質的熱脹冷縮、熱傳導、擴散,導體電阻率隨溫度變化及物質可進行固、液、汽三種狀態的變化等另外一類現象。前者的特徵是物體的空間位置發生變化,被稱為機械運動現象,力學研究其規律;仔細分析後一類現象,會發現存在一共同的特點,即都與溫度有關。我們將這一類的物質物理性質隨溫度變化的現象稱為熱現象。

    熱現象的產生是物質內部大量分子無規則運動導致的.當討論和研究熱現象規律時,

    ,物體的整體宏觀機械運動已不再屬於討論的範疇,人們將目光投向物質內部大量分子運動上。區別於機械運動物理概念,人們將由大量無規則運動的分子所組成的宏觀物質以熱現象為主要標誌的運動形態稱為熱運動。

    熱現象是熱運動的宏觀表現,熱運動是熱現象的微觀本質.

    熱運動不是孤立,往往在一定條件下可向其它運動形態轉化。如摩擦生熱、揮發降溫、氣缸內氣體吸熱對外做功、電流通過電阻發熱和溫差電池等。因此研究熱運動同其它運動形態轉化的規律也是熱學研究的另一個重要基本內容。

    熱學是研究物質熱現象、熱運動規律以及熱運動同其它運動形式之間轉化規律的一門學科。(未完待續)
上一章    本書目錄    下一章